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A B S T R A C T   

Objective: To study the effect of beam complexity on VMAT delivery accuracy evaluated by means of a trans
mission detector, together with the possibility of scoring plan complexity. 
Methods: 43 clinical VMAT plans delivered by a TrueBeam linear accelerator to both Delta4 Discover and Delta4 

Phantom+ for patient-specific quality assurance were evaluated. Global Dose-γ analysis, MLC-γ analysis, per
centage of leaves with a deviation between planned and measured leaf tip position lower than 1 mm (LD) were 
computed. Modulation complexity score (MCSv), average leaf travel (LT), a multiplicative combination of LT and 
MCSv (LTMCS), percentage of leaves with speed lower than 5 mm/s (LS), from 5 to 20 mm/s (MS), higher than 
20 mm/s (HS) and the average value of leaf speed (MLCSav) were evaluated by means of an home-made Matlab 
script. 
Results: Dose-γ passing rate showed a moderate correlation with MCSv, LT, MLCSav, LS and HS, while a stronger 
positive correlation was found with LTMCS. A strong correlation was observed between LD and both LT and 
leaves speed, while a weak correlation was observed with MCSv. A correlation between MLC-γ pass rate and plan 
complexity parameters was found except for MCSv; a moderate correlation with LS was observed, while all other 
parameters showed weak correlations. 
Conclusions: The study confirmed the possibility to establish correlations between plan complexity indices versus 
dose distribution and MLC parameters measured by a transmissive detector. Further investigation is necessary to 
define specific values of the complexity indices to evaluate whether a VMAT plan is deliverable as intended.   

1. Introduction 

Volumetric modulated arc therapy (VMAT), combining modulation 
of multileaf collimator (MLC) movements, gantry rotation speed and 
dose rate, ensures high dose conformity to the target and healthy tissue- 
sparing. The complexity of the VMAT plan might affect the deliverability 
of plan itself; in fact, the greater the plan modulation, the greater the 
uncertainty in delivery [1]. 

Linac mechanical limitations and the increase of the number of small 
or irregular fields result in differences in dose distributions between 
calculated and delivered plan. Therefore, a pre-treatment patient spe
cific quality assurance (PSQA) for each VMAT plan is suggested [2,3] to 
check the accuracy of intensity modulated radiotherapy (IMRT) plan 
dose calculation and detects relevant errors in the radiation delivery. 
Several studies have shown that as the treatment plan becomes more 

complex the passing rate in VMAT quality assurance decreases [4,5,6]. 
On the other hand, some studies have introduced modulation indices 

of VMAT plans that could allow to predict in the planning phase the plan 
delivery accuracy [7,8]. The use of plan modulation indices makes it 
possible to optimize times and resources: eventual correlations between 
modulation indices and pre-treatment QA results could be used to 
introduce new strategies in treatment planning, optimization and veri
fication [9]. By defining action and tolerance level specific for different 
types of treatment, it could be possible to avoid critical treatment plans, 
explain eventual anomalous conditions and differentiate the QA 
strategies. 

The combined use of the diode array Delta4 Phantom+ (ScandiDos, 
Uppsala, Sweden) [10] and the high-resolution diode based trans
mission detector (TRD) Delta4 Discover (ScandiDos, Uppsala, Sweden) 
[11] allows the physicist to evaluate the plan delivery accuracy using 
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both the dose gamma index method [12] and the multileaf collimator 
position verification. The latter is performed by evaluating the MLC leaf 
edge deviations and the MLC gamma index, a new parameter introduced 
by the manufacturer for the analysis of the measurements on VMAT 
plans. 

Based on the above considerations, the correlations between 
complexity plan indices based on the MLC movement patterns versus 
dose distribution and MLC parameters evaluated with measurements 
performed with Delta4 Discover in conjunction with Delta4 Phantom+

were investigated. 
Additionally, the possibility of scoring complexity of VMAT plans 

was investigated for optimizing the workflow of plan creation, optimi
zation and QA and for predicting the plan delivery accuracy with plan 
and MLC information. To the best of our knowledge, the currently 
published works describe the performances of the Delta4 Discover sys
tem in pre-treatment and in-vivo verification [13,14,15]. This is the first 
attempt to study the detector behaviour as a function of treatment plan 
complexity. 

2. Methods and materials 

2.1. Delta4 discover transmission detector 

The Delta4 Discover transmission detector is a fluence measurement 
device designed to monitor dose and MLC position during every treat
ment fraction. The detector consists of 4040p-type diode detectors each 
with an active area of 1 mm diameter and separated by 2.5 mm and 5 
mm along and perpendicular to the MLC motion direction respectively 
at the isocenter. The diode array can measure a maximum field size of 
25 × 19.5 cm2 when projected to the isocenter level. The detector can be 
easily attached to the head of a TrueBeam Linac (Varian, a Siemens 
Healthineers Company, Palo Alto, CA, USA), extending 2.3 cm from its 
collimator [11] (Fig. 1). Diode reading is sampled every 150 μs with no 
pause between the samples. For each of these samples, the signal level is 
compared against a pre-set threshold level to determine if it contains 
useful informations or only noise [16]. The initial setup of the TRD 
consists in three steps. A relative calibration using a single photon en
ergy is performed to check that all diodes operate correctly and even
tually to switch off the detectors with strong deviating signal (near zero 
or saturation). Then a detector position calibration tool checks that the 
diode rows of the Delta4 Discover matrix are correctly centered under 
the MLC leaves. If the calculated position is not as expected, fine 
adjustment of the TRD must be done. Finally, for each photon modality, 
using an IMRT plan supplied by the manufacturer, a leaf edge calibration 
is performed. During this measurement the exact position of the TRD 
matrix along the MLC leaf trajectory and the dosimetric leaf gap are 
determined; these values are saved and applied later during the 

determination of the MLC leaf edges position in plan verification. After a 
successfull calibration, more than 95 % of the deviations between the 
measured MLC edge and the nominal edge position should be within ±
1 mm. It seems reasonable that these procedures should be periodically 
performed in a dedicated QA program. 

The Delta4 Discover can be used in two different modes. In “Express 
Mode”, the detector, by means of the fluence measurement, can provide 
informations about the location of the MLC leaves and gantry and 
collimator angle. In “Synthesis Mode” the device, in conjunction with 
the Delta4 Phantom+ creates a link between the signals from both the 
devices in order to convert fluence to dose. This preliminary synchro
nization allows to use the Delta4 Discover by itself during daily treat
ments and to synthesize fluence measurements into a dose distribution 
in the Delta4 Phantom+. In such a way, the Delta4 Discover can be used 
to verify, by means of the gamma analysis implemented in the detector 
software, the dose distribution at each fraction of treatment delivery and 
the cumulative dose delivery as a function of control points (CP). 

Additionally, for each leaf that can be tracked, the detector integrates 
the diodes signal typically over 25 ms and sends that integrated signal to 
the workstation. For each package the actual gantry angle is measured 
and the leaf edges are computed. The leaf edge detection algorithm fits a 
sigmoid to both penumbras and determines the point of sharpest 
gradient of each sigmoid. This position is then adjusted with the dosi
metric leaf gap as obtained during the MLC calibration to retrieve the 
MLC leaf edge. The leaves deviations between measured and planned 
position are evaluated for each beam, leaves bank, control point and 
leaf. 

The leaf edge detection algorithm may break down for extreme MLC 
apertures, when an isolated leaf pair is nearly closed and there are large 
openings adjacent to these leaves, or when MLC movements are very fast 
[17]. Therefore, in analogy with the dose deviation gamma index (Dose- 
γ), the Delta4 Discover software calculates for VMAT plans an MLC 
gamma index (MLC-γ), by using the gamma formula with the measured 
difference in MLC leaf position corresponding to dose deviation and the 
difference in measured gantry angle corresponding to the spatial coor
dinate. The MLC gamma index calculation checks if the measured MLC 
leaf edge deviation intersects an ellipsoid representing the acceptance 
criteria for gantry angle and leaf position deviation. 

The detector software enables the user to set pass or fail criteria that 
may be used to support the decision if a plan passes or fails the verifi
cation process. Pass/fail criteria can be set for the percentage of diodes 
with the Dose-γ index less than 1, percentage of MLC leaves in all control 
points with the MLC-γ index less than 1, deviation between planned and 
measured leaf tip. 

Fig. 1. Delta4 Discover mounted on a Varian Truebeam Linac.  
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2.2. VMAT plans 

43 VMAT plans were created and optimized using the Varian treat
ment planning system (TPS) eclipse (Version 15.6) and delivered by a 
TrueBeam linear accelerator equipped with a standard millennium 120 
multileaf collimator to both Delta4 Discover and Delta4 Phantom+. The 
clinically commissioned energies of 6 MV and 6 MV flattening filter free 
(FFF) were used. The maximum dose rates were 600 and 1400 MU/min. 
All plans were evaluated as clinically acceptable and deliverable by pre- 
treatment QA and had been previously used to treat patients in our 
institution. 

In Table 1 the distribution of anatomical sites and the statistics of the 
VMAT plans are reported. 

2.3. Plan complexity parameters 

For each of 89 VMAT arcs and 178 leaf banks, the following pa
rameters were calculated:  

• MCSv, a modified modulation complexity score for VMAT introduced 
by Masi et al. [18];  

• LT, the average leaf travel over in-field moving leaves during each 
VMAT arc;  

• LTMCS, a multiplicative combination of LT and MCSv described by 
Masi et al. [18];  

• the leaves speed. 

The modulation complexity score (MCS) was originally described by 
McNiven et al. [19] for step-and-shoot IMRT static beams as a normal
ized sum over all segments of the product of the aperture area variability 
(AAV) and leaf sequence variability (LSV). Masi et al. [18] modified that 
index in order to apply it to VMAT plans by substituting CPs for IMRT 
segments. The MCSv, as in the original definition, has values in the range 
from 0 to 1. MCSv equal to 1 means no modulation and can be exem
plified by an arc with a fixed rectangular aperture with no leaves moving 
during the arc. When modulation increases, MCSv decreases. 

To determine LT (mm), for each active leaf, the travel over the VMAT 
arc was computed and the average over all in-field moving leaves was 
evaluated. 

As suggested by Masi et al. [18], the index LTi as (1000 − LT)/1000 
was calculated to obtain a value in the range from 0 to 1. LTi values are 

higher for lower values of leaf travel. Then, the combined action of LTi 
and MCSv was also examined. LTi was multiplied by MCSv, creating an 
index (LTMCS) that takes into account both parameters and has values 
ranging from 0 to 1. This parameter goes to zero for increasing degrees 
of modulation and leaf motion. 

Both MCSv and LTMCS were focused on the assessment of move
ments and shapes of MLC. 

Moreover, the speed of each leaf was calculated for each control 
point, with a method similar to that proposed by Park et al. [20]. Leaf 
position was extracted from the information contained in the DICOM RT 
Plan files for each control point while control point timing informations 
were extracted from the TPS. The analysis was limited to the active 
leaves, i.e. the leaves whose position has changed in at least one control 
point within the arc. 

The leaf speed related to the k-th active leaf and the i-th control point 
was calculated according to the formula: 

MLCSk,i =

⃒
⃒LPk,i+1 − LPk,i

⃒
⃒

Ti  

where LPk,i is the position of the k-th active leaf in the i-th control point 
and Ti is the time difference between (i + 1)-th and i-th control point. 

The frequency distribution of MLCSk,i was arbitrarily divided in three 
levels: percentage of MLCSk,i lower than 5 mm/s (Low Speed, LS), from 5 
to 20 mm/s (Medium Speed, MS) and higher than 20 mm/s (High Speed, 
HS). Moreover, the average value of MLCSk,i (MLCSav) of every bank was 
calculated for each VMAT arc. 

The evaluation of these parameters was performed with an home- 
made Matlab (MathWorks, Natick, MA) script. 

2.4. Delivery parameters 

The pre-treatment verification was performed with the Delta4 

Discover and Delta4 Phantom+. For each treatment arc or bank, the 
following parameters were computed and evaluated by Delta4 Discover 
software:  

• Dose-γ index;  
• MLC-γ index;  
• percentage of leaves over all CPs with a deviation between planned 

and measured leaf tip position lower than 1 mm (LD). 

Global Dose-γ analyses were performed with gamma criteria of 2 % −
2 mm and a threshold of 10 % of maximum dose was set. MLC-γ pass 
rates with 1 mm − 0.5◦ criteria were computed. Based on the precision 
of the leaf edge calibration process (see Delta4 Discover transmission 
detector section), a maximum leaf tip deviation of 1 mm was choosen. 

2.5. Data analysis 

Descriptive statistic was performed for the plan metrics (MCSv, LT, 
LTMCS and MLCSav, LS, MS, HS) and for the delivery parameters 
measured during pre-treatment verification (Dose-γ, MLC-γ and LD). 

As a next step, to investigate the effect of plan complexity on the 
VMAT plan verification accuracy, correlations between plan complexity 
metrics and delivery parameters were executed with Spearman rank 
correlation coefficient (rs). Correlation was considered very strong for rs 
≥ 0.80, strong for 0.60 ≤ rs < 0.80, moderate for 0.40 ≤ rs < 0.60, weak 
for 0.20 ≤ rs < 0.40 and very weak/no correlation for rs < 0.20. Sta
tistical significance was defined at p < 0.05. 

3. Results 

3.1. Plan complexity parameters 

Descriptive statistics of plan complexity parameters over 43 VMAT 

Table 1 
Distribution of anatomical sites and statistics of the VMAT plans. Head and neck, 
rectum, prostate and pelvis prostate cancer patients were treated with simul
taneous integrated boost plans.  

Patient 
class 

# Total PTV 
Volume 
(cm3) (Mean 
± 1 SD) 

PTV 
Dose 
(Gy) 

# of 
fractions 

# of 
arcs 

Mean total 
delivery 
time (min) 

Lung 5 358 ± 50 60 30 2 
partial  

1.46 

Esophagus 5 932 ± 368 41.4 23 2 full  2.85 
Head & 

Neck 
5 770 ± 103 70/ 

63/ 
58.1 

35 2 full  3.06 

Prostate 5 149 ± 30 70/63 28 2 
partial  

1.77 

Brain 5 272 ± 53 60 30 2 
partial  

1.51 

Male 
Pelvis 

5 907 ± 172 70/ 
63/ 
53.2 

28 2 full  3.08 

Female 
Pelvis 

5 991 ± 187 48.6 27 2 full  2.63 

Rectum 5 1236 ± 140 50/45 25 2 full  2.83 
Lung SBRT 3 19 ± 4 50 5 3 

partial  
8.04  
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treatments are shown in Table 2. It can be observed that values of both 
MCSv and LTMCS were higher in Brain and Lung plans than in H&N and 
Pelvis plans. Although MCSv, by definition, can have values in the range 
from 0 to 1, we did not observe any value greater than 0.43. The highest 
values of MCSv were obtained for low modulation plans characterized by 
a single Planning Target Volume (PTV) or by a distant OARs position 
with respect to the PTV or by unchallenging clinical dose constraints. 

A wide range of LT values (11 cm − 68 cm) was obtained. Largest 
values were observed for Pelvis and H&N treatments, since these clinical 
sites have generally large treatment volumes. SBRT plans showed MCSv 
values similar to those of Pelvis and H&N treatments due to the presence 
of small and irregular beam apertures, but they had shorter average leaf 
travel values due to the small size of the PTVs. 

No values of MLC leaf speed higher than 24 mm/s were observed. To 
illustrate the differences in the patterns of MLCSk,i according to the plan 
complexity, histograms of MLCSk,i for H&N (low MCSv, high MLCSav), 
Brain (high MCSv, low MLCSav) and SBRT plans are shown in Fig. 2. As 
for leaf travel values, the highest percentage of low speed leaves was 
observed for SBRT plans due to the small size of PTVs. 

3.2. Delivery parameters 

Descriptive statistics for the delivery parameters, Dose-γ, MLC-γ 
passing rates and LD are summarized in Fig. 3. 

The Dose-γ passing rate values are close to or greater than our 
department tolerance threshold of 95 %. 100 % of the measured arcs met 
the clinically established action level of 62 % for the MLC-γ pass rate. We 
observed a wide range of the percentage of leaves with a deviation lower 
than 1 mm, between 37 % and 92 %. 

3.3. Correlation analysis 

Results of Spearman correlation analysis between the delivery and 
plan parameters are illustrated in Table 3. 

Table 2 
Average value and standard deviation of MCSv, LT, LTMCS and MLCSk,i related parameters reported for the different patient classes.  

Patient class MCSv±σ LT± σ (cm) LTMCS± σ MLCSav± σ (mm/s) LS± σ (%) MS± σ (%) HS± σ (%) 

Lung 0.334 ± 0.066 30.0 ± 2.2 0.212 ± 0.089 9.5 ± 0.9 44.6 ± 5.0 30.0 ± 10.2 25.3 ± 9.0 
Esophagus 0.270 ± 0.045 53.1 ± 6.1 0.127 ± 0.027 9.3 ± 1.3 46.2 ± 5.9 25.0 ± 2.4 28.7 ± 5.1 
H&N 0.201 ± 0.018 59.1 ± 5.5 0.083 ± 0.016 9.9 ± 1.0 41.5 ± 4.8 30.0 ± 2.0 28.5 ± 3.7 
Prostate 0.274 ± 0.038 28.2 ± 3.1 0.197 ± 0.033 7.1 ± 1.1 59.7 ± 4.0 21.5 ± 1.6 18.8 ± 3.3 
Brain 0.324 ± 0.075 34.9 ± 8.4 0.211 ± 0.055 7.6 ± 1.9 56.9 ± 10.4 21.6 ± 4.2 21.5 ± 6.8 
Male Pelvis 0.236 ± 0.020 63.6 ± 2.2 0.086 ± 0.011 10.6 ± 1.3 39.5 ± 5.8 27.8 ± 1.3 32.7 ± 5.0 
Female Pelvis 0.293 ± 0.036 53.9 ± 5.1 0.135 ± 0.023 10.5 ± 1.1 40.5 ± 4.3 26.9 ± 1.0 32.6 ± 4.6 
Rectum 0.332 ± 0.044 54.3 ± 9.7 0.155 ± 0.055 9.6 ± 0.8 44.5 ± 3.3 25.7 ± 0.7 29.8 ± 3.3 
Lung SBRT 0.267 ± 0.042 20.1 ± 7.6 0.213 ± 0.039 6.4 ± 2.2 61.9 ± 11.9 21.3 ± 5.4 16.7 ± 6.7  

Fig. 2. Frequency of MLCSk,i in each leaf bank for H&N (a), Brain (b) and SBRT (c) plans.  

Fig. 3. Box plot of Dose-γ and MLC-γ passing rates (PR) (right scale) and LD 
(left scale) distribution for VMAT plans. 

Table 3 
Spearman rank correlation coefficients between Dose-γ passing rate, MLC-γ 
passing rate, LD and plan complexity parameters.  

Metric Dose-γ LD MLC-γ 

rs p-value rs p-value rs p-value 

MCSv  0.47  0.01  0.21  0.04  0.16  0.14 
LT  − 0.54  <0.01  − 0.60  <0.01  − 0.39  <0.01 
LTMCS  0.61  <0.01  0.52  <0.01  0.33  0.02 
MLCSav  − 0.53  <0.01  − 0.79  <0.01  − 0.39  <0.01 
LS  0.50  <0.01  0.79  <0.01  0.40  <0.01 
MS  − 0.31  0.04  − 0.58  <0.01  − 0.27  <0.01 
HS  − 0.60  <0.01  − 0.71  <0.01  − 0.37  <0.01  

L. Radici et al.                                                                                                                                                                                                                                   



Physica Medica 122 (2024) 103387

5

3.3.1. Dose-γ passing rates vs plan complexity parameters. 
A moderate positive correlation was observed between Dose-γ 

passing rate and MCSv, as illustrated in Fig. 4. Higher passing rates were 
obtained for the patient classes with higher MCSv. 

Dose-γ pass-rate as a function of LT and LTMCS are plotted in Fig. 5 

(a) and 5(b), respectively. 
As expected, we observed a negative correlation with leaf travel, i.e. 

for higher LT values lower pass-rates (less accurate dosimetric results) 
were more frequent. As can be seen in Fig. 5(a), for plans having 
extremely high LT values (greater than 600 mm) most of the dosimetric 
verifications showed pass-rates below 98 %, while for leaf travel values 
lower than 300 mm all the Dose-γ pass- rate values were above 98 %. 
The behavior of Dose-γ passing rate as a function of LTMCS showed a 
positive correlation similar to that observed for MCSv, but definitely 
stronger (rs = 0.61). 

A moderate correlation was observed between Dose-γ passing rate 
and MLCSav, LS and HS as illustrated in Fig. 6. The rs values of HS and LS 
as well as mean value of MLC speeds to global gamma passing rates with 
2 %–2 mm were statistically significant (p-values < 0.01), except for MS. 

The rs values of LS had positive sign, while those of the other MLC 
speeds had negative one. Therefore, the values of global gamma passing 
rates increased as LS increased and decreased as MS and HS increased. 
Globally the slower the leaves, the better the dose gamma passing rate. 

3.3.2. LD vs plan complexity parameters 
The rs and the corresponding p-values between LD and every plan 

parameters are shown in Table 3. The rs values of LD were always sta
tistically significant (p-values < 0.01). A weak correlation is observed 
between LD and MCSv. Instead, for the 178 banks analyzed, a strong 
correlation is observed between LD and LT, as illustrated in Fig. 7. 

The same strong correlation is obtained between LD and leaves 
speed, as shown in Fig. 8. The rs value of LS had positive sign, while 

Fig. 4. Dose-γ passing rate (PR) against MCSv.  

Fig. 5. Dose-γ passing rate (PR) against LT (a) and LTMCS (b).  

Fig. 6. Dose-γ passing rate (PR) against MLCSav (a), LS (b) and HS (c).  
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those of the other MLC speed parameters always had negative signs. 

3.3.3. MLC-γ passing rates vs plan complexity parameters 
A correlation between MLC-γ pass rate and plan complexity 

parameters was found, except for MCSv. A moderate correlation with LS 
(rs = 0.40) was observed, while all other parameters showed weak 
correlations. The LS rs value had positive sign, while MLCSav, MS and HS 
showed a negative correlation, indicating that, when the leaf speeds 
increased, the MLC-γ passing rate decreased for most of the arcs (Fig. 9). 

4. Discussion 

PSQA consists in individualized measurements either before the first 
fraction (without patient) and/or during treatment (in vivo) and it is still 
considered as gold standard for treatment quality assessment 
[21,22,23]. The Delta4 Discover, used in “Synthesis Mode”, allows to 
verify the dose distribution and leaves positions at each fraction of 
treatment delivery. 

Assuming that agreement between calculations and measurements 
decreases as plan modulation increases [4,5,6], it should be possible to 
predict PSQA results from complexity metrics. Correlation between 
PSQA results and complexity metrics is strongly impacted by many pa
rameters: characteristics of detector, analysis method and criteria, linac 
and treatment technique, TPS and beam modelling. Therefore, the 
relationship between complexity metrics and PSQA results should be 
specifically established by each centre depending on PSQA process, 
machine settings and TPS modeling and optimizer. 

To this aim, results of patient-specific quality assurance of 43 VMAT 
plans expressed as Dose-γ MLC-γ passing rates and LD were analyzed as a 
function of different plan complexity parameters: MCSv, LT, LTMCS, and 

Fig. 7. Percentage of leaves with a deviation less than 1 mm vs LT.  

Fig. 8. LD against MLCSav (a), LS (b), MS (c) and HS (d).  
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leaves speed related parameters. 
The distribution of the delivery parameters reported in Fig. 3 shows 

that the threshold values selected for each parameter were adequate 
since there were no saturation issues. Furthermore, the high LD range 
confirms that the 1 mm threshold makes LD quite sensitive to variations 
in leaves positioning. 

In analogy with what reported in literature [4,5], a correlation at 
least moderate is observed between Dose-γ passing rate and complexity 
indexes. With increasing complexity, whatever the index taken into 
consideration, there is a decrease in the outcome of PSQA results. Many 
authors [8,24] have found similar correlations (greater than 0.45) be
tween Dose-γ passing rate 2 % − 2 mm and MCS using the Pearson 
correlation coefficient. McGarry et al. [25] found a correlation of about 
0.5 between Dose-γ passing rate 3 % − 3 mm and MCS. 

Correlation with Dose-γ passing rate was strong for LTMCS (rs >

0.60) which was proven to be a complete and exhaustive indicator in 
order to predict the accuracy of dosimetric delivery. Similar results were 
found by Masi et. al [18]. In their study measurements were performed 
with a Delta4 phantom + and Pearson correlation coefficient was found 
equal to 0.60 for LTMCS, 0.54 for MCS and 0.62 for LT with the Dose-γ 
passing rate 2 % − 2 mm. 

In this study, by correlation analysis, we demonstrated that leaves 
speed could affect the VMAT delivery accuracy. Mean MLC speed, LS 
and HS showed considerable correlations to the Dose-γ passing rates. As 
the MLC speed increased, VMAT delivery accuracy decreased. In more 
details, as the HS to LS ratio grows, global dose gamma passing rates 
become worse. The lowest correlation values were observed for MS (rs <

0.39), i.e. for medium complexity treatment plans. 
This result is consistent with results reported by Park et al. [20]. In 

their study, the Spearman correlation coefficient between leaves speed 
collected from log files and Dose-γ passing rate, measured with a Map
Check detector (Sun Nuclear Corporation), was evaluated. The study 
highlights a correlation coefficient between average MLC speed and 
Dose-γ passing rate 2 % − 2 mm equal to − 0.417, furthermore a cor
relation coefficient of 0.479 was found between Dose-γ passing rate 2 % 
− 2 mm and the percentage of MLC leaves with a speed lower than 4 
mm/s. 

LD shows a weak correlation with MCSv but a strong one with LT and 
a moderate one with LTMCS. 

Leaves speed showed strong correlations with LD, similarly to what 
was found by Park et al. [20]. They showed that leaf speed is correlated 
with MLC performance for VMAT deliveries since a decrease of leaf 
speed improves positional accuracy of the MLC. In the study, based on 
log file analysis, a Spearman correlation coefficient between MLC po
sition error and mean MLC speed and percentage of leaves with a speed 
lower than 4 mm/s was found equals 0.915 and − 0.927, respectively. 

LD exhibited the highest correlation with LS: plans with very slow 
leaves showed high LD values, while the correlation with HS, although 
good, was weaker. As a consequence, the best performances in deter
mining leaves position are obtained for very slow leaves. The lack of 
synchronization between the control point of the RTplan file and de
livery measurement rather than to a real issue in leaves positioning can 
explain the large amout of leaves with a deviation higher than 1 mm. 
Since the Delta4 Discover integrates the diodes signal over 25 ms while 

Fig. 9. MLC-γ passing rate (PR) against MLCSav (a), LS (b), MS (c) and HS (d).  
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the leaves are constantly moving, the increase in uncertainty of leaf 
position detection for VMAT plans is likely due to synchronization 
mistakes in matching the leaves position for each control point, espe
cially when the leaves are moving very fast. However, this consider
ation, though supported by the results of the quality controls on the MLC 
periodically performed in our center, would require a more in-depth 
study that is beyond the scope of this study. 

Therefore, the MLC-γ index analysis was introduced by the manu
facturer specifically for VMAT treatments as a solution to these issues, 
combining deviation in MLC leaf positioning and gantry angle. All the 
analyzed complexity parameters correlated with MLC-γ index. 

The correlations between plan parameters and Dose-γ allow the user 
to predict the outcome of the dosimetric PSQA process. This objective 
can be achieved by setting specific Action and Tolerance limits for the 
different treatment sites considered, as suggested by TG 218 AAPM [26]; 
then, from the relationship between complexity and delivery, threshold 
values of the plan’s complexity parameters could be defined in order to 
discriminate plans whose QA might not pass. 

The results indicate MLCs speed parameters and LTMCS as the most 
suitable complexity metrics for scoring VMAT plans and for predicting 
plan dosimetric accuracy. Although MCSv is a powerful metric to score 
VMAT plan complexity, due to the dynamic nature of VMAT delivery, it 
cannot be used as a single parameter. 

LD, although intuitive and easily related to the performance of the 
linac, deserves careful evaluations, as well by means of log-files based 
analysis to differentiate measurement uncertainties from delivery ones. 
The MLC-γ overcomes the synchronization issues of LD and it is still able 
to intercept positoning errors, as reported by Petrucci et al. [15]. Its 
correlations with the plan parameters can be used to predict the 
outcome of the geometrical results of the PSQA process. 

The awareness of the behavior and limitations of the measuring in
struments and procedures used for PSQA allows for the correct assess
ment of anomalous situations in order to intercept critical or suboptimal 
treatment plans and to defines different QA strategies. 

Issues associated to limitations of the measuring instrument can be 
solved using a log-files based PSQA, as widely discussed in literature 
[27,28]. However, this approach can not be considered a fully inde
pendent verification. Furthermore, the log-files do not make all the 
treatment parameters available to the user [29]. 

Although the results of this study are very promising, they did not 
allow us to define specific value of the complexity indices for predicting 
the plan delivery accuracy and consequently for optimizing the work
flow of plan creation, optimization and QA. To this aim further inves
tigation with a larger sample of VMAT plans for various tumor sites (also 
unacceptable plans due to excessive modulation), higher resolution of 
speed classes and plan complexity parameters related to the gantry 
speed modulation have to be considered. These items will be investi
gated in a future work. 

5. Conclusions 

The complexity of the VMAT plan might affect the deliverability of 
plan itself, the greater the plan modulation, the greater the uncertainty 
in delivery. The study confirmed the possibility to establish correlations 
between plan complexity indices versus dose distribution and MLC pa
rameters measured by a transmissive detector. By defining plan 
complexity classes, these correlations could be used for predicting the 
plan delivery accuracy. In such a way critical or suboptimal treatment 
plans can be intercepted and different and more efficient QA strategies 
can be adopted. 
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